os
2004-08-09 12:09:51 UTC
ÐüÉͰÙÍòµÄÎÊÌâ
ÔÌâ: Million-Buck Problems.
Òë×Ô: The Math. Intelligencer, Vol.~24(2002), No.~3, p.17--20.
Scott W.~Williams
ÒòApostolos DoxiadisµÄÐÂС˵¡¶Uncle Petros and Goldbach Conjecture¡·
(2000Äê)µÄ·¢±í,Ó¢¹ú³ö°æÉÌFaberºÍÃÀ¹úBloomsbury³ö°æÉçµÄ³ö°æÉÌFaberÄóö
100ÍòÃÀÔªÀŽÐüÉÍÄÇЩÄÜœâŸöGoldbach²ÂÏëµÄÈË.(2000Äê) 5ÔÂ10ÈÕ,ClayÊýѧŽÙœø»á
ÕýÊœ
Ðû²ŒÁËÒ»Ïî700ÍòÃÀÔªµÄǧìûÄꜱ,Ëü¶Ô7žöÖøÃûÎÊÌâÖÐÿžöÎÊÌâµÄœâŽðœ±ÒÔ100ÍòÃÀÔª
.ÄÑ
ÒÔÖÃÐÅ,ÕâÖÖ¹«¿ªµÄŸªÈ˳Ž×÷ŸÓÈ»ÔÚÊýѧÖÐÕŒŸÝÁËÓÅÏȵØÎ».±ŸÎÄÊÇÎÒžöÈ˶ԌžžöÖøÃû
µÄÎŽ
œâŸöÎÊÌâµÄÀúÊ·ÆÀÂÛ,ËùÉæŒ°µœµÄÕâЩÎÊÌâ¶ÔÒ»žöŸßÓÐŽóѧÊýѧ³Ì¶È»òžüµÍһЩµÄÈË
¶ŒÄÜ
˒ω.
ÔÚÎÒ»¹ÊÇÒ»žöŽóѧÉúµÄʱºò,BurnsideÎÊÌâ,Ææµ¥Èº²ÂÏë(1963Äê)ºÍÁ¬ÐøÍ³ŒÙÉèžÕ
žÕµÃµœœâŸö,¶øRiemannŒÙÉè,ËÄÉ«×÷ÍŒÎÊÌâ,FermatŽó¶šÀí,Bieberbach²ÂÏë,
Poincare²ÂÏ댰Goldbach²ÂÏë¶ŒÊÇЩÓÐÃûµÄÎŽœâŸöÎÊÌâ.10ÄêÖ®ºó,ËÄÉ«ÎÊÌâºÍ
Alexandrov²ÂÏëµÃµœÁËœâŸö£»20Äêºó,Bieberbach²ÂÏëµÃµœÁËÖ€Ã÷¶ø30Äêºó
FermatŽó¶šÀíÒ²ÓÐÁËœá¹û.ֻʣÏÂÇ°ÃæÌᵜµÄŒžžöÎÊÌâÈÔÎŽœâŸö,ͬʱÆäËûһЩ
ÎÊÌâÓÖž¡³öÁËË®Ãæ.œâŸöÕâЩÎÊÌâÖÐÈκÎÒ»žö¶Œ»áÓ®µÃ``ÉùÓþ',²¢ÓÐʱ»¹»áŽøÀŽ
Ò»ÏîÖØÒªµÄÊýѧœ±,ÏóÊÇ145{,}000ÃÀÔªµÄSteeleœ±,50{,}000ÃÀÔªµÄWolfœ±,»¹Óб»·Ç
ÕýÊœ³Æ×÷``ŵ±Ž¶ûÊýѧœ±'µÄFieldsœ±,ºóÕßÊÚÓèÒ»¿éÌØÊâµÄœðÖÊœ±ÕÂ(²¢žœÒÔ
15{,}000ÃÀÔª),»òÕß»¹ÓŠÌᵜ±»ÎÒ³ÆÎªÕæÕýÊýѧŒÒµÄ``ŵ±Ž¶ûœ±'µÄÈðµä»ÊŒÒ
¿ÆÑ§ÔºµÄ500{,}000ÃÀÔªµÄCrafoordœ±.
œâŸöÆäÖÐÒ»žöÎÊÌâ±ãÄÜŽÓClayÊýѧŽÙœø»á(http://www.claymath.org)µÃµœ°ÙÍò
ÃÀÔªµÄÄÇ7žöÎÊÌâÊÇ£ºÏÂÃæ»¹ÒªÌᵜµÄPoincare²ÂÏëÒÔŒ°RiemannŒÙÉè,PÓëNPÎÊ
Ìâ,Hodge²ÂÏë,Yang -- MillsŽæÔÚÐÔÓëÖÊÁ¿È±Ê§,Navier -- StokesŽæÔÚÐÔ
Óë¹â»¬ÐÔ,ÒÔŒ°BirchŒ°Swinnerton -- Dyer²ÂÏë.ÓëÕâЩÎÊÌâÒ»ÆðµÄ»¹ÓÐÒ»×é
ÎÄÕÂ,ËüÃÇÓÉStephen Cook, Pierre Deligne, Enrico Bombieri, Charles
FeffermanºÍAndrew WilesËùÐŽ.$^{1)}$\footnotetext{\songti\ssmall\zihao{-5}
{1)}¹ØÓÚClayÊýѧŽÙœø»áÉ蜱µÄ7ŽóǧìûÄêÎÊÌâµÄÖÐÒëÎÄ£¬Çë²ÎŒû±Ÿ¿¯2000Äê
µÚ1, 2ÆÚ.---$\!$---Уע}
°ÑœðÇ®ºÍÊýѧÎÊÌâÁ¬ÆðÀ޲¢·ÇÐÂÏÊÊÂ.1908Äê,µÂ¹ú¹€ÒµŒÒPaul Wolfskehl±ãΪFermat
Žó¶š
ÀíµÄÖ€Ã÷ÉèÁ¢ÁËÒ»Ïî100,000Âí¿Ë(ÄÇʱŽóԌֵ100ÍòÃÀÔª)µÄœ±Ïî(ŒûNotices A.~M.~
S. 4
4 no.10(1997), 1294 -- 1302).¿Éϧ,Íš»õÅòÕÍÁœð±áÖµ,µœ1997ÄêWilesÄõœµÄÖ»
ÓÐ5
0{,}000ÃÀÔªÁË.µ«ÊÇÈðµä»ÊŒÒ¿ÆÑ§Ôº°ÑSchockœ±ÊÚÓèÁËWiles,Ëû»¹ŽÓPaul Sabatier
Žóѧ
µÃµœÁËFermatœ±.DeBrangesÒòÖ€Ã÷ÁËÒ»žöœÏBieberbach²ÂÏëҪǿºÜ¶àµÄ²ÂÏë»ñµÃÁËOstro
vskiϱ.
±»³Æ×÷``œâÎÊÌâÍõ×Ó,ÌáÎÊÌâŽóÍõ'µÄÒÑÊŵÄPaul Erd{\H o}s»ñµÃÁË50{,}000ÃÀÔªµÄ
Wolf
Êýѧœ±.Ëû»¹ÎªÄÇЩÄÜœâŸöËûËùÌá³öµÄһЩÎÊÌâµÄÊýѧŒÒÉèÁ¢ÁËœ±Ïî,ŽÓ¶ø¹ãΪÈËÖª.
ÕâЩ
œ±œðŽÓ10{,}000ÃÀÔªµœ25ÃÀÔª²»µÈ.œ±10{,}000ÃÀÔªµÄÊÇÊýÂÛÖб»Ëû³ÆÖ®Îª``ûÓÐÏ£
Íû'»á
µÃµœœâŸöµÄÎÊÌâ,¶øœ±25ÃÀÔªµÄÔòÊÇЩËûÈÏΪ²¢²»ÌرðÀ§Äѵ«ÈŽÈԟߌŒÇÉÐÔµÄÎÊÌ⣻
ÕâЩ
ÎÊÌâÊÇÔÚÆäœ²ÒåÖÐÌá³öÀ޵Ä.ÓÉÓÚErd{\H o}sÔÚ1996ÄêÊÅÊÀ,ÆäËûһЩÊýѧŒÒÈÔÈ»ŒÌÐø
ÁËÕâ
ÏîÔË×÷.ÏÖÔÚ,Ò»žö¹«ËŸÌṩÁË100ÍòÃÀÔª¶øÁíÒ»žöŽÙœø»áÉõÖÁÌṩÁËžü¶àµÄÉÍœð.
Fieldsœ±²»žøÓèÄÇЩÄêÁ䳬¹ý40ËêµÄÈË.ÒòÓëœâŸöÖøÃûÎÊÌâÓйضø»ñµÃFieldsœ±µÄÈË
Ê¿ÓÐ
£º
Selberg(1950),ÒòÆäÔÚRiemannŒÙÉè·œÃæµÄ¹€×÷;Smale(1966),ÒòÆäÔÚ$n>4$µÄ¹ãÒåPoinca
re²ÂÏë·œÃæµÄ¹€×÷;Thompson(1970),ÒòÆäÔÚœâŸöÆæµ¥Èº¹€×÷ÖеÄ×÷ÓÃ;Bombieri(1974
),Òò
ÆäÔÚŸÖ²¿Bieberbach²ÂÏëÖеĹ€×÷;Faltings(1986),ÒòÆäœâŸöÁËMordell²ÂÏë;Freedman
(
1986),ÒòÆäÔÚ$n=4$µÄ¹ãÒåPoincare²ÂÏëÉϵĹ€×÷;Borcherds(1998)ÒòÆäœâŸöÁË¿ÕÏë
ħȺ
²ÂÏë(Monstrous Moonshine Conjecture).
»òÐíÍš¹ýœâŸöÒ»žöÎÊÌâ¶ø»ñµÃµÄ``ÉùÓþ',»áŽøžøÒ»Ð©ÈËÊʵ±µÄ²Æž».ÏÂÃæÕâЩΎœâŸö
µÄÎÊ
ÌâÈ«¶ŒŸßÓÐŒòµ¥µÄ±íÊö,ËüÃÇÊÇ£ºGoldbach²ÂÏë,KolakoskiÐòÁÐ,$3x+1$ÎÊÌâ,Schanuel
²Â
Ïë,¿ò»ý(Box-Product)ÎÊÌâ,ÆæÍêÈ«ÊýÎÊÌâ,RiemannŒÙÉè,ÂÏÉúËØÊý²ÂÏë,ÁÖÖÐÃÔ·(Lost
-
in-a-Forest)ÎÊÌâ,»ØÎÄ(Palindrome)ÎÊÌâÒÔŒ°Poincare²ÂÏë.Íš³£ÈÏΪÆäÖÐһЩÎÊÌâ
(Ri
emannŒÙÉèºÍPoincare²ÂÏë)¶ÔÊýѧÁìÓòµÄŒÛÖµ±ÈÆäËûµÄÒªŽó.È»¶øÔøŸÓйýһЩŽÎÒª
µÄÎÊ
Ìâ,ËüÃDz»ÊÇÍš¹ýŒòµ¥µØœ«ÏֳɵČŒÇÉ×÷ÁË±ÈÆäËûÈËžüœøÒ»²œµÄÍÆœø¶øœâŸöµÄ,¶øÊÇÒý
œøÁË
žß¶ÈµÄÔŽŽËŒÏë,ÕâЩˌÏ뵌ÖÂÁËÐí¶àеķ¢Õ¹.ÒòŽË,ÎÒ³ÆËüÃǶŒÊǰÙÍòÉÍœðµÄÎÊÌâ
,ÒòΪ
ÎÒÏàÐÅËüÃǵĜâŸö(°üÀšÆäÉæŒ°µÄŒŒÇÉ)¶ÔÊýѧµÄ·¢Õ¹¶øÑÔÖÁÉÙÖµ100ÍòÃÀÔª.
1. Goldbach²ÂÏë
1742Äê6ÔÂ7ÈÕ,ChristianGoldbachÐŽÁËÒ»·âÐÅžøL.~Euler,Ìá³öÁËÿžöÅŒÕûÊýÊÇÁœžö
ËØÊý
µÄºÍÕâÒ»ÃüÌâ,ËäÈ»ÒÑÖªËü¶Ôµœ4 $\cdot$ 10$^{13}$ǰµÄËùÓÐÊý¶Œ³ÉÁ¢,µ«ÈÔÎŽµÃµœ
Ö€Ã÷
.×îœÓœüœâŸöGoldbach²ÂÏëµÄÊdzŸ°ÈóµÄœá¹û,ŒŽÃ¿žö``³ä·ÖŽó'µÄÅŒÊýŸßÓÐ$p+qr$µÄ
ÐÎÊœ
,ÆäÖÐ
$p, q, r$ŸùÎªËØÊý.Ó¢¹úµÄFaberºÍÃÀ¹úBloomsbury³ö°æÉçµÄFaberÌá³öÁËһЩÑÏžñÒª
Çó,
°üÀšÒªÇóÕýÊœ·¢±í¶ÔGoldbach²ÂÏëµÄÖ€Ã÷.²ÎÓ럺ÕùµÄÈË»¹ÐèÒªÔÚ2002ÄêµÄ3ÔÂǰµÝœ»
ËûÃÇ
µÄÉêÇë,²¢ÓÚ2004ÄêµÄ3ÔÂǰ·¢±íÆäÎÄÕÂ.Èç¹ûÓÐÈË»ñÊ€,Ôòœ«ÔÚ2004Äêµ×µÃµœœ±œð.
ÈÔÎŽœâŸöµÄÒ»žöGoldbach²ÂÏëµÄÍÆÂÛÊÇËùΜµÄ{\kaishu ÆæÊýGoldbach²ÂÏë},ŒŽ``Žó
ÓÚ5µÄ
ÿžöÆæÕûÊýÊÇ3žöËØÊýÖ®ºÍ'.ÒÑŸÖ€Ã÷¶ÔÓÚŽóÓÚ10$^{7{,}000{,}000}$µÄÆæÕûÊýŽË²Â
Ïë³É
Á¢,Èç¹ûÓÐÁ˺ÏÊʵČÆËãÄÜÁŠ,ÀŽŒÆËãСÓÚ10$^{7{,}000{,}000}$µÄËùÓÐÇéÐÎ,Õûžöœá
ÂÛÒ²
¿ÉÄܳöÎÊÌâ.
2. Beal²ÂÏë
ÕâÊÇFermatŽó¶šÀíµÄÒ»žöÍÆ¹ã.Èç¹û$A^x+B^y=C^z$,ÆäÖÐ$A, B, C, x,y$ºÍ$z$ΪÕýÕû
ÊýÇÒ
$x, y$ºÍ$z$¶ŒŽóÓÚ2,Ôò$A, B, C$±ØÓй«Òò×Ó.AndrewBealÊÇÎ»ÒøÐÐŒÒ,Ò²ÊÇλҵÓàÊý
ѧŒÒ
.ËäÈ»ËûÒѶԎ˲ÂÏëµÄœâŸöÌṩÁË75,000ÃÀÔª,µ«ÔÚ1997Äê²ÅµÚÒ»ŽÎ¶ÔÍâÐû²Œ.ÆÀœ±Î¯
Ô±»á
ÓÉCharles Fefferman,Ron GrahamºÍR.~Daniel Mauldin×é³É,»ùœðÓÉÃÀ¹úÊýѧ»áÍйÜ
.
3. SchanuelµÄÁœžö²ÂÏë
(²»ÒªÓëSchanuelÒýÀí»òAx--Schanuel¶šÀíÏà»ìÏý)
ÔÚ20ÊÀŒÍ60ÄêŽú³õ,SchanuelÌá³öÁËÓ랎֞Êýº¯ÊýÓйصĎúÊýÐÔÖʵÄÁœžö²ÂÏë.Schanuel
¶ÔÕâÁœžö²ÂÏë·Ö±ðÌṩÁË2{,}000ÃÀÔªºÍ1{,}000ÃÀÔªµÄœ±œð,ÒÔœ±ÀøÔÚËûµÄÓÐÉúÖ®Äê
Öз¢
±íµÄ¶ÔÕâÁœžö²ÂÏëµÄœâŽð.{\kaishu Schanuel²ÂÏë}ÊǹØÓÚ$(\C, e^z)$µÄ{\kaishu
ÎÞ¹Ø
ÐÔÖÊ}µÄ£ºÈç¹û$z_1, z_2, \ldots, z_n$ΪÔÚÓÐÀíÊýÉÏΪÏßÐÔÎ޹صÄ$\C$ÖОŽÊý,Ôò
$z_1
, z_2, \ldots, z_n,e^{z_1}, e^{z_2}, \ldots,e^{z_n}$ÖÐij$n$žöΪŽúÊýÎÞ¹Ø.{
\kai
shu ÄæSchanuel²ÂÏë}˵,ûÓОü¶àµÄÇéÐλá³öÏÖ.Ã÷È·µØËµ,Èç¹û$F$ÊÇžöÌØÕ÷ÁãµÄ¿É
ÊýÓò
,$E: F \to F$ÊÇÓɌӷšÈºµœ³Ë·šÈºµÄ̬ͬ,²¢ÇÒËüµÄºËΪѻ·×ÓȺ.ÔòŽË²ÂÏëÊÇ˵,Èç
¹û$
(F, E)$ŸßÓÐÎÞ¹ØÐÔÖÊ,ÔòÓÐÒ»žöÓòŒä̬ͬ$h: F \to \C$,ʹµÃ$h(E(x))=e^{h(x)}$.
ÀýÈç
ÕâÁœžö²ÂÏëÖÐÈÎÒ»žö¶ŒÔ̺ÁË$e$ºÍ$\pi$µÄŽúÊýÎÞ¹ØÐÔ.[ÔÚµÚÒ»žö²ÂÏëÖÐÈ¡$z_1=1,
z_2
=\pi i$;ÔÚµÚ¶þžöÖÐ,ÈËÃDZØÐè¹¹Ôì$(F, E)$,ËüÓÐÒ»žöÔª$p$ʹµÃ$E(ip)=-1$,ŽÓ¶ø$
E(1)
$ºÍ$p$ΪŽúÊýÎÞ¹Ø.]Ŀǰ,ÎÒÃÇÉõÖÁ»¹²»ÖªµÀ$e+\pi$ÊÇ·ñΪÎÞÀíÊý.
4. KolakoskiÐòÁÐ
¿ŒÂÇÓÉ1ºÍ2×é³ÉµÄÐòÁÐ
$$\sigma = \langle 1221121221221121122121121221121121221221121221211
21122122112 \rangle.$$
$\sigma$µÄÒ»žö{\kaishu
¿é}ÊÇÒ»žö×îŽóµÄ³£Öµ×ÓÐòÁÐ.¿ŒÂÇÕâЩ¿éºÍËüÃǵij€¶È.ÀýÈç,ŽÓ×ó¶Ë¿ªÊŒ,µÚÒ»¿é$\
lang
le 1 \rangle$Ÿß³€¶È1.µÚ¶þ¿é$\langle 22 \rangle$Ÿß³€¶È2.µÚÈý¿é$\langle 11\
rang
le$Ÿß³€¶È2.ÕÕŽËŒÌÐøÏÂÈ¥²¢×¢ÒⵜÓÉÕâЩ¿éµÄ³€¶ÈÊý¹¹³ÉµÄÐòÁÐ$\lambda=\langle
122
1121221\ldots \rangle$Ç¡ÊÇ$\sigma$µÄÇ°ÃæµÄ²¿·Ö.KolakoskiÐòÁÐÊÇÖžÓÉ1ºÍ2¹¹³É
µÄ(
ΚһµÄ)ÎÞÇîÐòÁÐ$\sigma$,ËüÓÉ1¿ªÊŒ²¢ÇÒËüµÄ¿éµÄ³€¶ÈÊý¹¹³ÉµÄÐòÁÐ$\lambda$Âú×ã
$\l
ambda =\sigma$. Chris Kimberling(Ξhttp://cedar.evansville.edu/\~{}ck6/index
.
html)
ÔÊŵ200ÃÀÔªÒÔœ±ÀøµÚÒ»žö·¢±íœâŸöÏÂÃæÈ«²¿5žöÎÊÌâµÄÎÄÕµÄÈË(Ëû˵Èç¹ûÄãœâŸöÁË
ÆäÖÐ
Ò»žö,ÄDZãÓÐÁË»ú»á,ÒòΪÄã±ã»áÃ÷°×ÈçºÎœâŸöÆäËûŒžžöÎÊÌâ).°Ñ×îºóµÄ4žöÎÊÌ⿎³É
ÊÇÒ»
žöÎÊÌâ¿ÉÒÔʹKolakoskiÐòÁÐÎÊÌâÏÔµÃÓÐЩȀζ£º
i.¶Ô$\sigma$µÄµÚ$n$ÏîÊÇ·ñŽæÔÚ±íŽï¹«Êœ£¿
ii.Èç¹ûÒ»Ž®Êý(ÀýÈç212211)³öÏÖÔÚ$\sigma$ÖÐ,ËüÊÇ·ñ±Ø¶š»áÔÙ³öÏÖ£¿
iii.Èç¹ûÒ»Ž®Êý³öÏÖÔÚ$\sigma$ÖÐ,ÊÇ·ñÆäÄæÒ²±Ø¶š³öÏÖ£¿(112212³öÏÖ)
iv.Èç¹ûÒ»Ž®Êý³öÏÖÔÚ$\sigma$ÖÐ,²¢œ«ÆäÖеÄ1Óë2»¥»»,ÊÇ·ñеÄÊýŽ®Ò²±Ø³öÏÖ£¿(12112
2³öÏÖ)
v.ÊÇ·ñ1ÔÚ$\sigma$³öÏֵįµÂÊŽæÔÚŒ«ÏÞ,ËüÊÇ·ñΪ1/2£¿
5. ¿ò»ýÎÊÌâ
6. CollatzµÄ3{\mbox{\boldmath $x$}}+1²ÂÏë
7. ÆæÍêÈ«ÊýÎÊÌâ
8. RiemannŒÙÉè
9. ÂÏÉúËØÊý²ÂÏë
10. Poincare²ÂÏë
11. »ØÎÄÎÊÌâ
12. ÁÖÖÐÃÔ·ÎÊÌâ
œ÷œ«±ŸÎÄÏמøJohn Isbell.ÓйØÕâÆªÎÄÕÂ,ÎÒÔøÓëWilliam Massey,
Mohan Ramachandran, Samuel SchackºÍStephen SchanuelœøÐÐÁËËœÈËÍš
ÐÅ.È»¶øËùÓеĎíÎó¶ŒÓÉÎÒžºÔð.
ñãÃùΰ Òë
·ëÐ÷Äþ У
--
ÎÒÊÇÒµÓàžãÊýѧµÄ£¬ÎÒ×îœüµÄÐËÈ€Ö÷ÒªÊÇÔÚ×éºÏÊýѧÖеÄRamseyÀíÂÛ
[m[33m¡ù ÀŽÔŽ:¡€å«º£ÐÇÔÆ bbs.ustc.edu.cn¡€[m
ÔÌâ: Million-Buck Problems.
Òë×Ô: The Math. Intelligencer, Vol.~24(2002), No.~3, p.17--20.
Scott W.~Williams
ÒòApostolos DoxiadisµÄÐÂС˵¡¶Uncle Petros and Goldbach Conjecture¡·
(2000Äê)µÄ·¢±í,Ó¢¹ú³ö°æÉÌFaberºÍÃÀ¹úBloomsbury³ö°æÉçµÄ³ö°æÉÌFaberÄóö
100ÍòÃÀÔªÀŽÐüÉÍÄÇЩÄÜœâŸöGoldbach²ÂÏëµÄÈË.(2000Äê) 5ÔÂ10ÈÕ,ClayÊýѧŽÙœø»á
ÕýÊœ
Ðû²ŒÁËÒ»Ïî700ÍòÃÀÔªµÄǧìûÄꜱ,Ëü¶Ô7žöÖøÃûÎÊÌâÖÐÿžöÎÊÌâµÄœâŽðœ±ÒÔ100ÍòÃÀÔª
.ÄÑ
ÒÔÖÃÐÅ,ÕâÖÖ¹«¿ªµÄŸªÈ˳Ž×÷ŸÓÈ»ÔÚÊýѧÖÐÕŒŸÝÁËÓÅÏȵØÎ».±ŸÎÄÊÇÎÒžöÈ˶ԌžžöÖøÃû
µÄÎŽ
œâŸöÎÊÌâµÄÀúÊ·ÆÀÂÛ,ËùÉæŒ°µœµÄÕâЩÎÊÌâ¶ÔÒ»žöŸßÓÐŽóѧÊýѧ³Ì¶È»òžüµÍһЩµÄÈË
¶ŒÄÜ
˒ω.
ÔÚÎÒ»¹ÊÇÒ»žöŽóѧÉúµÄʱºò,BurnsideÎÊÌâ,Ææµ¥Èº²ÂÏë(1963Äê)ºÍÁ¬ÐøÍ³ŒÙÉèžÕ
žÕµÃµœœâŸö,¶øRiemannŒÙÉè,ËÄÉ«×÷ÍŒÎÊÌâ,FermatŽó¶šÀí,Bieberbach²ÂÏë,
Poincare²ÂÏ댰Goldbach²ÂÏë¶ŒÊÇЩÓÐÃûµÄÎŽœâŸöÎÊÌâ.10ÄêÖ®ºó,ËÄÉ«ÎÊÌâºÍ
Alexandrov²ÂÏëµÃµœÁËœâŸö£»20Äêºó,Bieberbach²ÂÏëµÃµœÁËÖ€Ã÷¶ø30Äêºó
FermatŽó¶šÀíÒ²ÓÐÁËœá¹û.ֻʣÏÂÇ°ÃæÌᵜµÄŒžžöÎÊÌâÈÔÎŽœâŸö,ͬʱÆäËûһЩ
ÎÊÌâÓÖž¡³öÁËË®Ãæ.œâŸöÕâЩÎÊÌâÖÐÈκÎÒ»žö¶Œ»áÓ®µÃ``ÉùÓþ',²¢ÓÐʱ»¹»áŽøÀŽ
Ò»ÏîÖØÒªµÄÊýѧœ±,ÏóÊÇ145{,}000ÃÀÔªµÄSteeleœ±,50{,}000ÃÀÔªµÄWolfœ±,»¹Óб»·Ç
ÕýÊœ³Æ×÷``ŵ±Ž¶ûÊýѧœ±'µÄFieldsœ±,ºóÕßÊÚÓèÒ»¿éÌØÊâµÄœðÖÊœ±ÕÂ(²¢žœÒÔ
15{,}000ÃÀÔª),»òÕß»¹ÓŠÌᵜ±»ÎÒ³ÆÎªÕæÕýÊýѧŒÒµÄ``ŵ±Ž¶ûœ±'µÄÈðµä»ÊŒÒ
¿ÆÑ§ÔºµÄ500{,}000ÃÀÔªµÄCrafoordœ±.
œâŸöÆäÖÐÒ»žöÎÊÌâ±ãÄÜŽÓClayÊýѧŽÙœø»á(http://www.claymath.org)µÃµœ°ÙÍò
ÃÀÔªµÄÄÇ7žöÎÊÌâÊÇ£ºÏÂÃæ»¹ÒªÌᵜµÄPoincare²ÂÏëÒÔŒ°RiemannŒÙÉè,PÓëNPÎÊ
Ìâ,Hodge²ÂÏë,Yang -- MillsŽæÔÚÐÔÓëÖÊÁ¿È±Ê§,Navier -- StokesŽæÔÚÐÔ
Óë¹â»¬ÐÔ,ÒÔŒ°BirchŒ°Swinnerton -- Dyer²ÂÏë.ÓëÕâЩÎÊÌâÒ»ÆðµÄ»¹ÓÐÒ»×é
ÎÄÕÂ,ËüÃÇÓÉStephen Cook, Pierre Deligne, Enrico Bombieri, Charles
FeffermanºÍAndrew WilesËùÐŽ.$^{1)}$\footnotetext{\songti\ssmall\zihao{-5}
{1)}¹ØÓÚClayÊýѧŽÙœø»áÉ蜱µÄ7ŽóǧìûÄêÎÊÌâµÄÖÐÒëÎÄ£¬Çë²ÎŒû±Ÿ¿¯2000Äê
µÚ1, 2ÆÚ.---$\!$---Уע}
°ÑœðÇ®ºÍÊýѧÎÊÌâÁ¬ÆðÀ޲¢·ÇÐÂÏÊÊÂ.1908Äê,µÂ¹ú¹€ÒµŒÒPaul Wolfskehl±ãΪFermat
Žó¶š
ÀíµÄÖ€Ã÷ÉèÁ¢ÁËÒ»Ïî100,000Âí¿Ë(ÄÇʱŽóԌֵ100ÍòÃÀÔª)µÄœ±Ïî(ŒûNotices A.~M.~
S. 4
4 no.10(1997), 1294 -- 1302).¿Éϧ,Íš»õÅòÕÍÁœð±áÖµ,µœ1997ÄêWilesÄõœµÄÖ»
ÓÐ5
0{,}000ÃÀÔªÁË.µ«ÊÇÈðµä»ÊŒÒ¿ÆÑ§Ôº°ÑSchockœ±ÊÚÓèÁËWiles,Ëû»¹ŽÓPaul Sabatier
Žóѧ
µÃµœÁËFermatœ±.DeBrangesÒòÖ€Ã÷ÁËÒ»žöœÏBieberbach²ÂÏëҪǿºÜ¶àµÄ²ÂÏë»ñµÃÁËOstro
vskiϱ.
±»³Æ×÷``œâÎÊÌâÍõ×Ó,ÌáÎÊÌâŽóÍõ'µÄÒÑÊŵÄPaul Erd{\H o}s»ñµÃÁË50{,}000ÃÀÔªµÄ
Wolf
Êýѧœ±.Ëû»¹ÎªÄÇЩÄÜœâŸöËûËùÌá³öµÄһЩÎÊÌâµÄÊýѧŒÒÉèÁ¢ÁËœ±Ïî,ŽÓ¶ø¹ãΪÈËÖª.
ÕâЩ
œ±œðŽÓ10{,}000ÃÀÔªµœ25ÃÀÔª²»µÈ.œ±10{,}000ÃÀÔªµÄÊÇÊýÂÛÖб»Ëû³ÆÖ®Îª``ûÓÐÏ£
Íû'»á
µÃµœœâŸöµÄÎÊÌâ,¶øœ±25ÃÀÔªµÄÔòÊÇЩËûÈÏΪ²¢²»ÌرðÀ§Äѵ«ÈŽÈԟߌŒÇÉÐÔµÄÎÊÌ⣻
ÕâЩ
ÎÊÌâÊÇÔÚÆäœ²ÒåÖÐÌá³öÀ޵Ä.ÓÉÓÚErd{\H o}sÔÚ1996ÄêÊÅÊÀ,ÆäËûһЩÊýѧŒÒÈÔÈ»ŒÌÐø
ÁËÕâ
ÏîÔË×÷.ÏÖÔÚ,Ò»žö¹«ËŸÌṩÁË100ÍòÃÀÔª¶øÁíÒ»žöŽÙœø»áÉõÖÁÌṩÁËžü¶àµÄÉÍœð.
Fieldsœ±²»žøÓèÄÇЩÄêÁ䳬¹ý40ËêµÄÈË.ÒòÓëœâŸöÖøÃûÎÊÌâÓйضø»ñµÃFieldsœ±µÄÈË
Ê¿ÓÐ
£º
Selberg(1950),ÒòÆäÔÚRiemannŒÙÉè·œÃæµÄ¹€×÷;Smale(1966),ÒòÆäÔÚ$n>4$µÄ¹ãÒåPoinca
re²ÂÏë·œÃæµÄ¹€×÷;Thompson(1970),ÒòÆäÔÚœâŸöÆæµ¥Èº¹€×÷ÖеÄ×÷ÓÃ;Bombieri(1974
),Òò
ÆäÔÚŸÖ²¿Bieberbach²ÂÏëÖеĹ€×÷;Faltings(1986),ÒòÆäœâŸöÁËMordell²ÂÏë;Freedman
(
1986),ÒòÆäÔÚ$n=4$µÄ¹ãÒåPoincare²ÂÏëÉϵĹ€×÷;Borcherds(1998)ÒòÆäœâŸöÁË¿ÕÏë
ħȺ
²ÂÏë(Monstrous Moonshine Conjecture).
»òÐíÍš¹ýœâŸöÒ»žöÎÊÌâ¶ø»ñµÃµÄ``ÉùÓþ',»áŽøžøÒ»Ð©ÈËÊʵ±µÄ²Æž».ÏÂÃæÕâЩΎœâŸö
µÄÎÊ
ÌâÈ«¶ŒŸßÓÐŒòµ¥µÄ±íÊö,ËüÃÇÊÇ£ºGoldbach²ÂÏë,KolakoskiÐòÁÐ,$3x+1$ÎÊÌâ,Schanuel
²Â
Ïë,¿ò»ý(Box-Product)ÎÊÌâ,ÆæÍêÈ«ÊýÎÊÌâ,RiemannŒÙÉè,ÂÏÉúËØÊý²ÂÏë,ÁÖÖÐÃÔ·(Lost
-
in-a-Forest)ÎÊÌâ,»ØÎÄ(Palindrome)ÎÊÌâÒÔŒ°Poincare²ÂÏë.Íš³£ÈÏΪÆäÖÐһЩÎÊÌâ
(Ri
emannŒÙÉèºÍPoincare²ÂÏë)¶ÔÊýѧÁìÓòµÄŒÛÖµ±ÈÆäËûµÄÒªŽó.È»¶øÔøŸÓйýһЩŽÎÒª
µÄÎÊ
Ìâ,ËüÃDz»ÊÇÍš¹ýŒòµ¥µØœ«ÏֳɵČŒÇÉ×÷ÁË±ÈÆäËûÈËžüœøÒ»²œµÄÍÆœø¶øœâŸöµÄ,¶øÊÇÒý
œøÁË
žß¶ÈµÄÔŽŽËŒÏë,ÕâЩˌÏ뵌ÖÂÁËÐí¶àеķ¢Õ¹.ÒòŽË,ÎÒ³ÆËüÃǶŒÊǰÙÍòÉÍœðµÄÎÊÌâ
,ÒòΪ
ÎÒÏàÐÅËüÃǵĜâŸö(°üÀšÆäÉæŒ°µÄŒŒÇÉ)¶ÔÊýѧµÄ·¢Õ¹¶øÑÔÖÁÉÙÖµ100ÍòÃÀÔª.
1. Goldbach²ÂÏë
1742Äê6ÔÂ7ÈÕ,ChristianGoldbachÐŽÁËÒ»·âÐÅžøL.~Euler,Ìá³öÁËÿžöÅŒÕûÊýÊÇÁœžö
ËØÊý
µÄºÍÕâÒ»ÃüÌâ,ËäÈ»ÒÑÖªËü¶Ôµœ4 $\cdot$ 10$^{13}$ǰµÄËùÓÐÊý¶Œ³ÉÁ¢,µ«ÈÔÎŽµÃµœ
Ö€Ã÷
.×îœÓœüœâŸöGoldbach²ÂÏëµÄÊdzŸ°ÈóµÄœá¹û,ŒŽÃ¿žö``³ä·ÖŽó'µÄÅŒÊýŸßÓÐ$p+qr$µÄ
ÐÎÊœ
,ÆäÖÐ
$p, q, r$ŸùÎªËØÊý.Ó¢¹úµÄFaberºÍÃÀ¹úBloomsbury³ö°æÉçµÄFaberÌá³öÁËһЩÑÏžñÒª
Çó,
°üÀšÒªÇóÕýÊœ·¢±í¶ÔGoldbach²ÂÏëµÄÖ€Ã÷.²ÎÓ럺ÕùµÄÈË»¹ÐèÒªÔÚ2002ÄêµÄ3ÔÂǰµÝœ»
ËûÃÇ
µÄÉêÇë,²¢ÓÚ2004ÄêµÄ3ÔÂǰ·¢±íÆäÎÄÕÂ.Èç¹ûÓÐÈË»ñÊ€,Ôòœ«ÔÚ2004Äêµ×µÃµœœ±œð.
ÈÔÎŽœâŸöµÄÒ»žöGoldbach²ÂÏëµÄÍÆÂÛÊÇËùΜµÄ{\kaishu ÆæÊýGoldbach²ÂÏë},ŒŽ``Žó
ÓÚ5µÄ
ÿžöÆæÕûÊýÊÇ3žöËØÊýÖ®ºÍ'.ÒÑŸÖ€Ã÷¶ÔÓÚŽóÓÚ10$^{7{,}000{,}000}$µÄÆæÕûÊýŽË²Â
Ïë³É
Á¢,Èç¹ûÓÐÁ˺ÏÊʵČÆËãÄÜÁŠ,ÀŽŒÆËãСÓÚ10$^{7{,}000{,}000}$µÄËùÓÐÇéÐÎ,Õûžöœá
ÂÛÒ²
¿ÉÄܳöÎÊÌâ.
2. Beal²ÂÏë
ÕâÊÇFermatŽó¶šÀíµÄÒ»žöÍÆ¹ã.Èç¹û$A^x+B^y=C^z$,ÆäÖÐ$A, B, C, x,y$ºÍ$z$ΪÕýÕû
ÊýÇÒ
$x, y$ºÍ$z$¶ŒŽóÓÚ2,Ôò$A, B, C$±ØÓй«Òò×Ó.AndrewBealÊÇÎ»ÒøÐÐŒÒ,Ò²ÊÇλҵÓàÊý
ѧŒÒ
.ËäÈ»ËûÒѶԎ˲ÂÏëµÄœâŸöÌṩÁË75,000ÃÀÔª,µ«ÔÚ1997Äê²ÅµÚÒ»ŽÎ¶ÔÍâÐû²Œ.ÆÀœ±Î¯
Ô±»á
ÓÉCharles Fefferman,Ron GrahamºÍR.~Daniel Mauldin×é³É,»ùœðÓÉÃÀ¹úÊýѧ»áÍйÜ
.
3. SchanuelµÄÁœžö²ÂÏë
(²»ÒªÓëSchanuelÒýÀí»òAx--Schanuel¶šÀíÏà»ìÏý)
ÔÚ20ÊÀŒÍ60ÄêŽú³õ,SchanuelÌá³öÁËÓ랎֞Êýº¯ÊýÓйصĎúÊýÐÔÖʵÄÁœžö²ÂÏë.Schanuel
¶ÔÕâÁœžö²ÂÏë·Ö±ðÌṩÁË2{,}000ÃÀÔªºÍ1{,}000ÃÀÔªµÄœ±œð,ÒÔœ±ÀøÔÚËûµÄÓÐÉúÖ®Äê
Öз¢
±íµÄ¶ÔÕâÁœžö²ÂÏëµÄœâŽð.{\kaishu Schanuel²ÂÏë}ÊǹØÓÚ$(\C, e^z)$µÄ{\kaishu
ÎÞ¹Ø
ÐÔÖÊ}µÄ£ºÈç¹û$z_1, z_2, \ldots, z_n$ΪÔÚÓÐÀíÊýÉÏΪÏßÐÔÎ޹صÄ$\C$ÖОŽÊý,Ôò
$z_1
, z_2, \ldots, z_n,e^{z_1}, e^{z_2}, \ldots,e^{z_n}$ÖÐij$n$žöΪŽúÊýÎÞ¹Ø.{
\kai
shu ÄæSchanuel²ÂÏë}˵,ûÓОü¶àµÄÇéÐλá³öÏÖ.Ã÷È·µØËµ,Èç¹û$F$ÊÇžöÌØÕ÷ÁãµÄ¿É
ÊýÓò
,$E: F \to F$ÊÇÓɌӷšÈºµœ³Ë·šÈºµÄ̬ͬ,²¢ÇÒËüµÄºËΪѻ·×ÓȺ.ÔòŽË²ÂÏëÊÇ˵,Èç
¹û$
(F, E)$ŸßÓÐÎÞ¹ØÐÔÖÊ,ÔòÓÐÒ»žöÓòŒä̬ͬ$h: F \to \C$,ʹµÃ$h(E(x))=e^{h(x)}$.
ÀýÈç
ÕâÁœžö²ÂÏëÖÐÈÎÒ»žö¶ŒÔ̺ÁË$e$ºÍ$\pi$µÄŽúÊýÎÞ¹ØÐÔ.[ÔÚµÚÒ»žö²ÂÏëÖÐÈ¡$z_1=1,
z_2
=\pi i$;ÔÚµÚ¶þžöÖÐ,ÈËÃDZØÐè¹¹Ôì$(F, E)$,ËüÓÐÒ»žöÔª$p$ʹµÃ$E(ip)=-1$,ŽÓ¶ø$
E(1)
$ºÍ$p$ΪŽúÊýÎÞ¹Ø.]Ŀǰ,ÎÒÃÇÉõÖÁ»¹²»ÖªµÀ$e+\pi$ÊÇ·ñΪÎÞÀíÊý.
4. KolakoskiÐòÁÐ
¿ŒÂÇÓÉ1ºÍ2×é³ÉµÄÐòÁÐ
$$\sigma = \langle 1221121221221121122121121221121121221221121221211
21122122112 \rangle.$$
$\sigma$µÄÒ»žö{\kaishu
¿é}ÊÇÒ»žö×îŽóµÄ³£Öµ×ÓÐòÁÐ.¿ŒÂÇÕâЩ¿éºÍËüÃǵij€¶È.ÀýÈç,ŽÓ×ó¶Ë¿ªÊŒ,µÚÒ»¿é$\
lang
le 1 \rangle$Ÿß³€¶È1.µÚ¶þ¿é$\langle 22 \rangle$Ÿß³€¶È2.µÚÈý¿é$\langle 11\
rang
le$Ÿß³€¶È2.ÕÕŽËŒÌÐøÏÂÈ¥²¢×¢ÒⵜÓÉÕâЩ¿éµÄ³€¶ÈÊý¹¹³ÉµÄÐòÁÐ$\lambda=\langle
122
1121221\ldots \rangle$Ç¡ÊÇ$\sigma$µÄÇ°ÃæµÄ²¿·Ö.KolakoskiÐòÁÐÊÇÖžÓÉ1ºÍ2¹¹³É
µÄ(
ΚһµÄ)ÎÞÇîÐòÁÐ$\sigma$,ËüÓÉ1¿ªÊŒ²¢ÇÒËüµÄ¿éµÄ³€¶ÈÊý¹¹³ÉµÄÐòÁÐ$\lambda$Âú×ã
$\l
ambda =\sigma$. Chris Kimberling(Ξhttp://cedar.evansville.edu/\~{}ck6/index
.
html)
ÔÊŵ200ÃÀÔªÒÔœ±ÀøµÚÒ»žö·¢±íœâŸöÏÂÃæÈ«²¿5žöÎÊÌâµÄÎÄÕµÄÈË(Ëû˵Èç¹ûÄãœâŸöÁË
ÆäÖÐ
Ò»žö,ÄDZãÓÐÁË»ú»á,ÒòΪÄã±ã»áÃ÷°×ÈçºÎœâŸöÆäËûŒžžöÎÊÌâ).°Ñ×îºóµÄ4žöÎÊÌ⿎³É
ÊÇÒ»
žöÎÊÌâ¿ÉÒÔʹKolakoskiÐòÁÐÎÊÌâÏÔµÃÓÐЩȀζ£º
i.¶Ô$\sigma$µÄµÚ$n$ÏîÊÇ·ñŽæÔÚ±íŽï¹«Êœ£¿
ii.Èç¹ûÒ»Ž®Êý(ÀýÈç212211)³öÏÖÔÚ$\sigma$ÖÐ,ËüÊÇ·ñ±Ø¶š»áÔÙ³öÏÖ£¿
iii.Èç¹ûÒ»Ž®Êý³öÏÖÔÚ$\sigma$ÖÐ,ÊÇ·ñÆäÄæÒ²±Ø¶š³öÏÖ£¿(112212³öÏÖ)
iv.Èç¹ûÒ»Ž®Êý³öÏÖÔÚ$\sigma$ÖÐ,²¢œ«ÆäÖеÄ1Óë2»¥»»,ÊÇ·ñеÄÊýŽ®Ò²±Ø³öÏÖ£¿(12112
2³öÏÖ)
v.ÊÇ·ñ1ÔÚ$\sigma$³öÏֵįµÂÊŽæÔÚŒ«ÏÞ,ËüÊÇ·ñΪ1/2£¿
5. ¿ò»ýÎÊÌâ
6. CollatzµÄ3{\mbox{\boldmath $x$}}+1²ÂÏë
7. ÆæÍêÈ«ÊýÎÊÌâ
8. RiemannŒÙÉè
9. ÂÏÉúËØÊý²ÂÏë
10. Poincare²ÂÏë
11. »ØÎÄÎÊÌâ
12. ÁÖÖÐÃÔ·ÎÊÌâ
œ÷œ«±ŸÎÄÏמøJohn Isbell.ÓйØÕâÆªÎÄÕÂ,ÎÒÔøÓëWilliam Massey,
Mohan Ramachandran, Samuel SchackºÍStephen SchanuelœøÐÐÁËËœÈËÍš
ÐÅ.È»¶øËùÓеĎíÎó¶ŒÓÉÎÒžºÔð.
ñãÃùΰ Òë
·ëÐ÷Äþ У
--
ÎÒÊÇÒµÓàžãÊýѧµÄ£¬ÎÒ×îœüµÄÐËÈ€Ö÷ÒªÊÇÔÚ×éºÏÊýѧÖеÄRamseyÀíÂÛ
[m[33m¡ù ÀŽÔŽ:¡€å«º£ÐÇÔÆ bbs.ustc.edu.cn¡€[m